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Abstract. Results of high-energy magnetic X-ray diffraction on pure antiferromagnetic chromium are pre-
sented. The temperature dependence of the propagation vector of the spin-density wave (SDW) and the
strain-wave (SW) could be reproduced. The temperature dependence of the magnetic integrated intensity
could be measured in the transversally as well as in the longitudinally polarised SDW phase. The magnetic
form-factor has been determined in the transversally polarised SDW phase with five magnetic satellites.
For the first time a spin-orbit separation has been performed by comparing X-ray to neutron data. The
small orbital contribution to the magnetisation density turns out to be negligible, in agreement to our
relativistic band-structure calculations. In addition, measurements of strain-wave reflections have been
undertaken, and the results complement previous studies.

PACS. 75.25.+z Spin arrangements in magnetically ordered materials (including neutron
and spin-polarized electron studies, synchrotron-source x-ray scattering, etc.) – 78.70.Ck X-ray scattering

1 Introduction

In recent years, in addition to non-resonant magnetic
diffraction with hard X-rays (∼ 8 keV photon energy), in
the following denoted by “conventional X-ray diffraction”,
magnetic diffraction with photons in the energy range of
80 to 500 keV (“high-energy photons”) has been developed
on the model system MnF2 [1–4]. This method combines
some advantages of both, neutron and conventional X-ray
diffraction, such as bulk sensitivity and high momentum-
space resolution. Here, we present a study of antiferromag-
netic chromium, where results of both, high-energy X-ray
diffraction and neutron diffraction, are taken into account.
It is shown that the combination of these complementary
probes with regard to magnetic diffraction gives a more
complete picture than one method alone. This concerns
in particular the separation of spin and orbital angular
momentum. Such a separation has been undertaken with
X-rays of conventional energies for ferromagnetic struc-
tures by Collins et al. [5] on HoFe2 and Laundy et al. [6]
on Fe using a white-beam technique. For antiferromag-
nets such as Ho, UAs and NiO such a separation has been
performed with X-rays in the medium-energy range using
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polarisation analysis [7–10]. In this paper, we present for
the first time results for the separation of spin and orbital
magnetic moments using a combination of high-energy X-
ray and neutron diffraction. As a model system we chose
antiferromagnetic chromium.

For magnetic diffraction with high-energy photons, the
scattering cross section takes the following very simple
form [4]:

dσ
dΩ

= r2
0

(
λC

d

)2

|S⊥|2 , (1)

where r0 is the classical electron radius, λC the Compton
wavelength, d the lattice spacing and S⊥ the Fourier trans-
form of the spin component perpendicular to the diffrac-
tion plane. For neutron diffraction, the diffracted inten-
sity is proportional to the combination L(Q) + 2S(Q) of
both spin (S(Q)) and orbital (L(Q)) momentum. Thus,
by combining the results of high-energy X-ray and neu-
tron diffraction, orbital and spin contributions can be sep-
arated. We emphasise that the cross section given in (1)
is polarisation independent. Therefore, polarisation anal-
ysis is not required for a measurement of the pure spin
moment, in contrast to conventional X-ray diffraction.
Other features of high-energy X-ray diffraction include the
volume enhancement, where in contrast to non-resonant
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Fig. 1. Magnetic and strain-wave satellites in reciprocal space.
First-order magnetic satellites are shown as full circles. First
and second-order strain-wave satellites are shown as open cir-
cles. In addition, the main charge reflections are shown as large
open circles. qm in reciprocal lattice units.

diffraction at medium energies, intensity is gained due to
the small absorption, allowing the use of large samples.

Chromium is an itinerant antiferromagnet exhibiting
an incommensurate spin-density wave (SDW) in the anti-
ferromagnetic phase. The phase transition from the para-
magnetic to the antiferromagnetic state takes place at the
Néel-temperature TN = 311 K [11,12]. This SDW gives
rise to magnetic satellite peaks at positions corresponding
to the magnetic propagation vector qm of the SDW. The
SDW has been explained by Overhauser [13] who relates
the magnetic propagation vector qm of the SDW to the
translation vector between electron and hole states in re-
ciprocal space. qm describes the nesting vector between
the respective two Fermi surfaces.

Above the spin-flip transition at TSF = 123 K, the
SDW is transversally polarised, whereas below TSF, the
polarisation rotates to become parallel to the modula-
tion wave vector which leads to a longitudinally polarised
SDW [14].

Figure 1 shows the three-dimensional reciprocal space
for chromium. The full dots represent the first-order mag-
netic satellites. δ = 1− qma/2π denotes the distance from
the first-order magnetic satellite to the next integral recip-
rocal lattice position. In the following, we will denote the
satellites occurring at distances δ and their higher har-
monics at 3δ as first and second-order SDW satellites.
These reflections are found near extinct charge reflections
of the fundamental bcc-structure.

Due to magneto-elastic coupling, the SDW is accom-
panied by an elastic strain-wave (SW) with a propagation
vector of 2qm [15]. The satellite reflections of this SW
are found at distances of n 2δ from the charge Bragg re-
flections. The first-order satellite reflections of this struc-
ture are situated at distances 2δ from ordinary charge
reflections. We will denote these satellites as first- and
higher-order SW satellites. These reflections are shown in
Figure 1 as white circles. Often, these satellite reflections

are also denoted as charge density wave (CDW) satellites.
This is because both effects can contribute to diffraction
at these positions in reciprocal space. A separation of SW
and CDW is not easy and requires a very accurate deter-
mination of the satellite intensities. A separation of these
effects has been attempted [16], but so far a CDW contri-
bution could not be demonstrated unambiguously.

Up to now, first- and second-order magnetic satellites
could be measured with neutron diffraction [17,18]. Also,
the satellites due to the SW have been investigated ex-
tensively with X-rays [15,19]. Only satellites of first- and
second-order have been found.

The measurement of magnetic reflections of chromium
is difficult since the magnetic moment is very low. The am-
plitude of the magnetic moment amounts to µ = 0.62µB

with a root mean squared moment of µrms = 0.43µB [20].
Synchrotron X-ray measurements of the elastic SW

have been performed by Gibbs et al. [19]. Non-resonant
magnetic X-ray diffraction was reported by Hill et al. [21].
They investigated the temperature dependence of the
wave vector qm and of the peak intensity of the magnetic
1+ δ 0 0 satellite in the transversally polarised state of the
SDW.

In this paper, we present a complete study of the Q-
dependence of the SW and the SDW satellites. Since for
high-energy X-ray diffraction geometric and absorption
factors can be neglected, the intensities of the satellites
could be determined to great precision. This is in con-
trast to conventional X-ray diffraction, and allows us to
compare different models describing the interplay between
SW and SDW based on a comparison of calculated and
measured intensities. Because of the small divergence of
the undulator beam and the resulting high resolution of
the instrument even in the dispersive case, we were able
to measure several points of the magnetic form-factor de-
pendence up to a value of sin θ/λ of more than 0.5 Å−1.

The measurement of the ordered magnetic form fac-
tor with X-rays presented here represents the first mea-
surement of higher order magnetic reflections on pure
chromium in the antiferromagnetic state. Measurements
of the magnetic form-factor of chromium have already
been performed with neutrons. Moon et al. [22] have
investigated samples of manganese doped chromium in
the ordered antiferromagnetic state. In these samples,
the SDW collapses to a commensurate antiferromagnetic
state which eases the measurement. By varying the Mn
concentration Moon et al. argue that the form-factor of
these alloys is identical to the pure chromium form-factor.
Measurements of the form-factor of the induced magnetic
moment have been performed with polarised neutrons
by Stassis et al. [23]. Recently we presented additional
data [24]. By comparing to atomic Hartree-Fock calcula-
tions the form-factor of the ordered moment of chromium
could be described by a pure spin dependence. The in-
duced form-factor was described by 40% spin and 60%
orbital form-factor.

The aim of the present investigation was to verify the
pure spin nature of the ordered-moment form-factor by a
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model-independent method and search for possible solid
state effects.

2 Experimental

The experiments were conducted at the high-energy un-
dulator beamline PETRA II and at the high-field wiggler
beamline BW5 at HASYLAB, Hamburg. As monochroma-
tor, we used an annealed Si-1 1 1 crystal with a mosaicity
of 4′′ and a Ge-doped Si-1 1 1 crystal with a mosaicity of
20′′, respectively. Measurements have been performed in a
two-crystal mode with monochromator and sample crys-
tals, as well as in a three-crystal mode using an additional
analyser crystal. In this case, the analyser crystal was of
the same type as the monochromator crystal. The photon
energy was 85 keV and 100 keV, respectively.

We used a cubic crystal with dimensions of 5 × 5 ×
5 mm3. The crystal faces were cut to be 1 0 0- and 1 1 0-
planes. Three crystallites were found with a mosaicity of
40′′ each. In a rocking curve scan, the reflections are sep-
arated by about 50′′. With a beam size of 1 × 1 mm2

one of these crystallites could be isolated. The magnetic
reflection observed at the 1− δ 0 0 position is shown in
Figure 2. The count rate in the maximum is 60 counts/s
above background at a ring current of 35 mA. The peak-
to-background ratio is 6:1. The crystal was mounted with
a 0 1 1 axis vertical in a He-cryostat, so that reflections of
type h k k could be observed. In this configuration, only
satellites belonging to the 〈1 0 0〉 domain could be mea-
sured. For the measurements of satellites of the 〈0 1 0〉
and 〈0 0 1〉 domains, a closed-cycle cryostat mounted in
an Eulerian-craddle was used.

3 Band structure calculations

To support the interpretation of the experimental re-
sults presented below, band structure calculations for
the commensurate antiferromagnetically ordered phase of
chromium have been performed within the framework of
spin density functional theory (SDFT) [26]. Because the
magnetic properties of chromium depend extremely sen-
sitive on the lattice parameter [27] it has been chosen
0.05% off from experiment to reproduce the experimen-
tal value for the magnetic moment (see above). The band
structure calculations have been done with the spin po-
larised relativistic version of the Korringa-Kohn-Rostoker
(KKR) method using the atomic sphere approximation
(ASA) [28]. This approach gave access not only to the
spin but also to the spin-orbit induced orbital magnetic
moments. From the corresponding magnetisation density
the spin and orbital magnetic form factors have been cal-
culated on the basis of the dipole approximation [29,30]:

fspin(Q) =
∫
j0(Qr)mspin(r)r2dr/mspin (2)

forb(Q) =
∫

(j0(Qr) + j2(Qr))morb(r)r2dr/morb . (3)
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Fig. 2. Magnetic 1−δ 0 0-satellite at 135 K measured in the
three crystal setup. (a) shows a rocking curve of the sample
crystal, equivalent to a transverse scan. (b) shows a scan of the
analyser crystal, which corresponds approximately to a longi-
tudinal direction in reciprocal space [25].

Here mspin(r) and morb(r) are the spin and orbital mag-
netisation, respectively, with the later determined by the
orbital angular momentum density [30]. The quantities
mspin and morb are the corresponding spin and orbital
magnetic moments. Finally, the functions jn(r) are the
spherical Bessel functions of order n.

4 Magnetic form-factor
In chromium, conduction electrons carry the magnetic
moment. Due to this delocalisation the form-factor falls
off rapidly with increasing momentum transfer. For this
reason, higher-order magnetic reflections are difficult to
measure. To suppress background and increase the peak-
to-background ratio, the form-factor measurements were
performed in a three-crystal setup. We were able to mea-
sure five different magnetic satellites: 1–δ 0 0, 1+δ 0 0,
1–δ 1 1, 1+δ 1 1 and 1+δ 2 2. The peak intensities vary
from 60 counts/s to 0.1 counts/s. Because of the diver-
gence of the undulator beam of σ = 2′′ and the imperfect
monochromator and analyser crystals, the resolution of
the instrument along the scattering vector was worse than
the intrinsic width due to the distribution of the lattice pa-
rameter ∆d/d, even in non dispersive setting. In this case,
the FWHM of the analyser scan corresponds to the res-
olution along the Ewald sphere. To obtain the integrated
intensity, we multiply the intensities of the rocking curve,
measured in three-crystal setup, with the FWHM paral-
lel to the scattering vector. A simulation has been per-
formed to calculate the resolution width along the scatter-
ing vector of the very weak 1+δ 2 2 satellite, which could
not be measured accurately. Here the information of the
resolution function for the triple-axis diffractometer was
used [25,31]. The calculated values for the width of
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Table 1. Measured and calculated width of the analyser scan
(ωa) and calculated width in q||-direction along the scattering
vector.

Reflection FWHMmeas
ωa FWHMtheo

ωa FWHMtheo
λ

1−δ 0 0 7.9±0.2 8.0 8.1

1+δ 0 0 7.2±0.2 7.4 7.5

1−δ 1 1 13.8±0.5 13.3 13.3

1+δ 1 1 15.0±0.7 14.3 14.2

1+δ 2 2 32.9 35.1

0 2 2 31.2±0.7 30.5 32.0

2 2 2 39.0±1.0 38.4 42.6

4 0 0 44.3 51.7

Table 2. Mean value (scaled as in Fig. 3) and ratio of the form-
factors of the magnetic satellites at temperatures of 125 K and
135 K around the positions 1 0 0 and 1 1 1 in reciprocal space.
These values have been measured during several independent
runs of PETRA and were found to be reproducible.

Position T [K] fm f−m/f
+
m

125 0.663±0.002 1.038±0.002
1 0 0

135 0.663±0.003 1.038±0.006

125 0.374±0.004 0.978±0.009
1 1 1

135 0.372±0.007 0.949±0.018

the analyser scan FWHMtheo
ωa

and the width along the
scattering vector FWHMtheo

λ of the magnetic satellites
and a few main charge peaks are tabulated together with
the measured values in Table 1. Note the excellent agree-
ment between measured and calculated values which jus-
tifies our procedure for the 1+δ 2 2 satellite. The mag-
netic form-factor is calculated from the integrated inten-
sity (corrected for the temperature factor) as

fm ∝

√
sin 2θ
λ3

(
d

λC

)2

Iint ∝
√
dIint. (4)

Here, λ is the wavelength and θ the Bragg angle. We can
determine only a relative form-factor dependence, since we
did not measure the satellites for all three domains along
〈1 0 0〉, 〈0 1 0〉 and 〈0 0 1〉. Our measurements show that an
unequal population of the magnetic domains exists in our
crystal, so that for an absolute measurement the inten-
sity of all six satellites must be known. The form-factor
determined for a sample temperature of 135 K at a pho-
ton energy of 100 keV is shown in Figure 3. For the 1 0 0
and the 1 1 1 satellites we can calculate the ratios of the
satellite intensities. The ratios determined at sample tem-
peratures of 125 K and 135 K are tabulated in Table 2. f−m
and f+

m denote the form-factors of the satellite peaks at
positions 1−δ 0 0 and 1+δ 0 0. To explain the differences in
the form-factor between opposite satellites, two models are
possible in the extreme case [11,33]. In the first model, the
magnetic moment is assumed to be constant within one
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Fig. 3. Magnetic form-factor measured at the satellites
1−δ 0 0, 1+δ 0 0, 1−δ 1 1, 1+δ 1 1 and 1+δ 2 2 compared with
the spherical atomic form-factor. The measured values are
scaled to the calculated curve [32] which represents the spheri-
cal atomic form-factor for the 3d44s2 configuration in Hartree-
Fock approximation.

unit cell and to change the amplitude discontinuously to
the next unit cell. It is described by the following modu-
lation wave:

Sz = Sz0 cos (qm · n) . (5)

Sz0 is the maximum amplitude and n the vector to the edge
of the unit cell. The magnetic form factors of the satellites
are f− = f(G − qm) and f+ = f(G + qm), respectively.
The ratio f−/f+ in that case is always greater than one.

In the other model the magnetic moment varies within
the unit cell continuously. Here, the variation of the
amplitude of the SDW is described by

Sz = Sz0 cos (qm · (n + rj)) , (6)

where rj is the vector to the j-th atom. The ratio of the
magnetic form-factors for the two satellites is in this case
equal to unity, since the form-factors are both equal to
that at the reciprocal lattice position q = G.

In the continuous model of the variation of the mag-
netisation amplitude, the SW can also be considered. It is
described by

rj = r0
j ±∆2 sin

(
2qm · (n + r0

j )
)
, (7)

where r0
j is the equilibrium position of the atom and ∆2

the SW amplitude. Then the ratio of the magnetic form-
factor is described by(

f−m
f+

m

)2

' (1∓ 2G ·∆2), (8)

where the different signs originate form the phase shift
of the SW relative to the SDW. The negative sign cor-
responds to the two waves in phase and the positive
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Fig. 4. Comparison of the mean values of the respective satel-
lites around an integral position shown in Figure 3 (opencir-
cles) with the neutron data of Moon et al. (full triangles) and
the calculated curves for the pure spin form-factor and the pure
orbital form-factor.

sign describes the ratio with the two waves by π out of
phase [35,12]. From this model, we expect the intensity
ratio of the 1 0 0 and the 1 1 1 reflections to be the same
after correction of the Debye-Waller factor, the magnetic
form-factor and the Lorentz factor. This is not the case in
our measurement (cf. Tab. 2). Instead, we see a ratio for
f−/f+ which is larger than one for the 1 0 0 satellites and
smaller than one for the 1 1 1 satellites.

In Figure 4, the mean values of the respective two satel-
lites of Figure 3 are compared to results of Moon et al. [22].
The latter are neutron results measured on manganese-
doped chromium crystals. Moon et al. showed that the
form-factor of chromium does not depend on small man-
ganese doping and they conclude that the form-factor
given in [22] is characteristic for pure chromium. Within
the error bars, neutron and high-energy X-ray data show
the same behaviour.

The measurement of reflections lower in intensity than
the (1 2 2) satellites, such as the (3 0 0) and (3 1 1) satel-
lites, were made impossible by broad reflections at these
positions arising from defect scattering. Since we are mea-
suring at a level of 10−8 compared to the main charge
reflections, we are very sensitive to this type of scatter-
ing which produced a temperature independent signal at
certain positions in reciprocal space.

In Figure 4 also the theoretical spin and orbital mag-
netic form factors are plotted. For the spin magnetic form
factor one finds it to be very similar to that derived from
atomic wave functions (see Fig. 3). This means that for
antiferromagnetically ordered chromium there are no pro-
nounced solid state effects as it has been found before for
the paramagnetic state, i.e. the induced for factor [34].
On the other hand, one notes that the spin and orbital
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Fig. 5. Intensity of the magnetic 1−δ 0 0 satellite as a function
of temperature. The inset shows the intensity of the 1 0−δ
satellite below and above the spin flip transition. Full circles
show results from the PETRA undulator beamline, open circles
an additional measurement with poorer statistic taken on the
BW5 wiggler beamline. The solid lines are guides to the eye.
The dotted line represents neutron diffraction data [11].

form factors shown in Figure 4 are very different. One
reason for this is that the spin magnetisation is somewhat
more spread out in space than the orbital magnetisation.
More important, however, is the fact that forb is, in con-
trast to fspin, not only determined by the spherical Bessel
function j0(Qr) but also by j2(Qr) (see Eqs. (3, 2)). The
contribution to forb corresponding to j2(Qr) is zero for
Q = 0 and shows a maximum for higher Q-values [30]. As
a consequence forb of chromium decays much slower as a
function of Q than fspin.

The theoretical results given in Figure 4 allow to dis-
cuss the experimental form factor derived from the neu-
tron and X-ray scattering experiments in a more detailed
way. Assuming the X-ray data to stem only from the
spin moment and using the calculated orbital form fac-
tor, the neutron data can be described by a superposi-
tion of the spin and orbital form factors with the orbital
part contributing−4(8)%. This is in reasonable agreement
with the very small spin-orbit induced orbital moment of
−0.004µB that has been obtained by the band structure
calculation. It is interesting to note that the calculated or-
bital moment for antiferromagnetic chromium is about an
order of magnitude smaller than that found for the pure
ferromagnetic transition metals Fe, Co and Ni [28].

5 Temperature variation
Figure 5 shows the intensity of the magnetic 1−δ 0 0 reflec-
tion as a function of temperature. Here, the result of the
very accurate measurement performed in the three-crystal
mode at 100 keV is shown together with that of the mea-
surement performed at 85 keV in two-crystal mode. It
is clearly seen that the magnetic signal vanishes below
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Fig. 6. Magnetic 1−δ 0 0-satellite at the spin-flip transition.
The solid line shows a Gaussian fitted to the temperature in-
dependent background below TSF.

diffraction plane

100 domain
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Fig. 7. Diffraction geometry with the three different propaga-
tion directions of the SDW along the main crystallographic
axes. The black arrows indicate the six magnetic domains
above TSF, the open arrows show the directions of the mag-
netic moment below TSF.

the spin-flip transition temperature TSF = 123 K. This is
due to the form of the magnetic cross section (1). At the
spin-flip transition, the polarisation of the SDW changes
from transverse to longitudinal and the spin direction,
which is perpendicular to the scattering plane above TSF,
comes to lie within the scattering plane below TSF. In
Figure 6, scans around TSF are shown where the magnetic
intensity vanishes within a temperature range of a few
Kelvin. A temperature-independent broad background re-
mains below TSF. The inset of Figure 5 shows the inten-
sity of the magnetic 1 0−δ reflection below and above
TSF. Here, the intensity is expected to change by a fac-
tor of two at the transition temperature if the domains
with equal spin-propagation direction are equally popu-
lated [11]. This can be understood from the change of
the spin direction in our diffraction geometry, as shown in
Figure 7. Since the two domains with the same propaga-
tion vector in the transversally polarised phase are equally
likely, a doubling of the volume with an inclination of the
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Fig. 8. Magnitude of the magnetic propagation vector in re-
ciprocal lattice units as a function of the sample temperature
measured at the 1−δ 0 0 satellite. The solid line is a guide to
the eye to illustrate that the temperature variation is smooth.

spin direction of 45◦ with respect to the diffraction plane
is obtained by cooling through TSF.

We measure a change in intensity by a factor of
2.3 ± 1.3. Within our estimated standard deviation, the
transverse domains are equally populated. The compari-
son of the intensities of the 1−δ 0 0 and the 1 0−δ satel-
lite gives a very unequal population of these domains. A
satellite of type 1 δ 0 could not be measured and is as-
sumed to be again weaker than the 1 0−δ satellite. The
population of the 〈0 0 1〉 domains is found to be 8% of that
of the 〈1 0 0〉 domain. If we assume the occupation of the
〈0 1 0〉 domain to be also 8% or smaller as compared to
the 〈1 0 0〉 domain, we can determine an occupation fac-
tor for the 〈1 0 0〉 domains of K = 0.86 or more. A similar
domain anisotropy has also been found by Hill et al. [21]
and was attributed to stress induced by polishing, i.e. to
near-surface effects. Here, we find that preferential domain
population extends throughout the whole sample volume.

In Figure 8, the temperature dependence of the mag-
netic wave vector qm is shown. The smooth increase con-
firms the incommensurability of the magnetic period with
respect to the period of the lattice.

6 Strain-wave

In addition to the magnetic satellites, satellites due to the
SW induced by the SDW can be observed. The effects
of SW and CDW are indistinguishable at first glance in
our case. A separation is only possible if the charge form-
factor is exactly known. Therefore it depends very much
on the manner in which the form-factor is calculated. In
the following, we denote the satellites caused by these two
waves in the crystal lattice as SW satellites, since it turns
out that the SW is the major contributor. We measured
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Fig. 9. Temperature dependence of the intensity of the first-
and second-order satellites due to the SW. The full circles rep-
resent the values for the first-order SW satellite, the open cir-
cle show the intensity of the second-order satellite. The inset
shows the scaled intensities. The solid line represents the inten-
sity variation of the magnetic satellite measured with neutron
diffraction [11].

first- and second-order SW satellites. We searched for
third-order satellites at positions 1−3δ 0 0 but could not
observe any. The intensity as a function of temperature
for the first- and second-order SW satellites is shown in
Figure 9.

Landau theory predicts that the intensity of the satel-
lite with wave vector nqm is proportional to |Mqm |n for
a sufficiently small amplitude of the SDW |Mqm | [36,17].
Therefore, the temperature variation of the appropriately
scaled intensities should be identical. The inset of Figure 9
shows the scaled intensities as predicted by Landau the-
ory. This behaviour could also be confirmed for the SW
satellites by Hill et al. [21].

A comparison of these curves with the variation of the
magnetic intensity in Figure 5 measured with high-energy
X-rays shows that the temperature behaviour of the lat-
ter is different, whereas the intensity dependence obtained
with neutron diffraction [17] follows the behaviour of the
scaled SW intensities very well.

In Figure 10, the wave vector variation of the SW with
temperature is shown. These measurements have been
performed without an analyser, therefore the resolution
along the scattering vector is moderate and amounts to
∆q|| ≈ 0.02 Å−1. Within the accuracy of the measure-
ment, the smooth variation found for qm in Figure 8 is
confirmed.

In order to obtain the amplitude of the SW and to
search for a possible CDW contribution, we measured
the Q-dependence of the 2qm and the 4qm satellites at
T = 125 K. The satellites around the 4 0 0 reflections
were measured at 100 keV in three-crystal mode to re-
duce the background for the weak second-order reflections.
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Fig. 10. Temperature dependence of the magnitude of the
wave vector of the SW. The full circles represent the values for
the first-order SW satellite, the open circle that of the second-
order satellite. The solid line represents the temperature de-
pendence of 2qm obtained from measurements at the magnetic
satellite (see Fig. 8).

The relatively strong first-order 2 0 0 satellites were mea-
sured at 85 keV in two crystal mode. An Fe-attenuator
of up to 12 mm thickness was used for the measurement
of first-order satellites because of the limited dynamical
range of the detector. The integrated intensities were de-
termined by correcting the transmitted intensities using
the absorption factor taken from [37]. The main charge
reflections were measured by attenuating the scattered sig-
nal by 42 mm Fe. The integrated intensities for the main
charge reflections and the satellites are tabulated in Ta-
ble 3. The three-crystal data have been treated in a similar
way to the magnetic intensities. They were multiplied by
the resolution width along the scattering vector, shown
in Table 3, to obtain integrated intensities. The 2 0 0 and
4 0 0 main charge reflections have to be corrected for ex-
tinction and absorption of the attenuator. Since the mag-
netic reflections are extinction free and the lattice spacing
for the 1−δ 0 0 of chromium and the Si-1 1 1 are almost
the same, heading to non-dispersive setting, the extinc-
tion g-value can be calculated from the FWHM η of the
magnetic satellite by using the relation g = 1/(2

√
πη)

if a Gaussian distribution is assumed [38]. The extinc-
tion has been corrected by using the Becker and Coppens
extinction model [39]. Extinction factors of 4 and 1.56,
respectively, have been determined. Whereas the intensi-
ties of the first-order SW satellites are almost identical,
the second-order satellites show a significant difference in
intensity. According to Overhauser [40], the ratio of the
satellite intensities to the intensities of the main charge
reflections can be described as follows:

I±nqm

IG
' K

f(G± nqm)
f(G)

J2
1 [(G± nqm) ·∆2] (9)
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Table 3. Integrated intensities of the 2 0 0 and 4 0 0 main
charge reflections together with the respective 2qm and 4qm
satellites in the direction of the scattering vector at T = 125 K.
The first-order satellites around the 2 0 0 reflection have been
measured in two crystal mode, the first- and second-order satel-
lites around the 4 0 0 reflection in three-crystal mode. FWHMλ

describes the width along the scattering vector. The intensities
of the main charge reflections are corrected for extinction. The
intensities of the 2 0 0 and 4 0 0 satellites were measured at dif-
ferent beamlines. They are not on an absolute scale and cannot
be compared.

Reflection FWHMλ Iint [arb. units]

2qm 0 0 2.71(9)× 105

2 0 0 4.56(10) × 109

4–2qm 0 0 2.59(8)× 105

4qm 0 0 47.9′′ 4.59(8)× 101

2+2qm 0 0 49.8′′ 4.51(4)× 105

4 0 0 51.7′′ 7.82(7)× 109

6–2qm 0 0 53.2′′ 4.22(1)× 105

8–4qm 0 0 54.8′′ 2.23(2)× 102

where I±nqm and IG are the intensities of the satellites
and the main charge reflection, respectively, corrected for
Lorentz- and Debye-Waller factor. f(G± nqm) and f(G)
are the corresponding charge form-factors, K represents
the occupation factor of the domain under consideration,
and J1[z] is the first-order Bessel-function. For the mean
value of the satellite intensities, equation (9) can be ap-
proximated by

Inqm

IG
' K

(
(G ·∆2)

2

)2

· (10)

The relative distortion ∆2/a due to the SW is determined
from the two-crystal data for the satellites around the 2 0 0
position to be ∆2/a = (1.3 ± 0.4) × 10−3. Here, we give
only the estimated standard deviation for counting statis-
tics. In addition there might be a systematic error due
to the rather large extinction correction. The result of a
direct comparison of the satellite intensities, as first done
by Mori and Tsunoda [16], is shown in Table 4. In [16]
a CDW with an amplitude of approximately 0.01 elec-
trons/atom was proposed. However, with the form factor
of [41] their and our measured ratios are consistent with
a pure SW. A contribution of a CDW with an amplitude
of 0.01 electrons/atom would result in a deviation from
the value of a pure SW by 3.5%, which is not consistent
with our findings at the 4 0 0 position. However, the calcu-
lated ratio itself is very sensitive to the calculated atomic
form-factor.

The intensities of the second-order SW satellites also
shown in Table 3, cannot be explained by the model where
a simple sinusoidal modulation (7) is assumed. They differ
by almost a factor of 5 whereas, according to the expres-
sion proposed in [16], the difference in intensity should
be smaller than 50%. The average intensity of the second-
order SW satellites measured around the 4 0 0 position can

Table 4. Measured intensity ratios of the SW satellites around
the 2 0 0 and 4 0 0 position in reciprocal space compared with
calculated values for a pure SW using the atomic form-factors
of [41]. Additionally, the averaged values determined by Mori
and Tsunoda [16] are shown.

I+/I−

Position
measured calculated measured [16]

2 0 0 0.96±0.04 0.918 0.909±0.010

4 0 0 0.94±0.01 0.934 0.932±0.015

be compared with the average intensity of the first-order
satellites, as has been done by Hill et al. [21]. To describe
the intensity by an expression analogous to (10), a second
Fourier component ∆4 in (7) is necessary. The position of
the j-th atom is then described by [21]

rj = r0
j ±

{
∆2 sin

(
2qm · (n + r0

j)
)

(11)

+ ∆4 sin
(
4qm · (n + r0

j)
)}
.

We find the ratio of these Fourier components to be
∆4/∆2 = (1.75 ± 0.8) × 10−2, which is in good agree-
ment with the value of (1.9 ± 0.3)× 10−2 determined by
Hill et al.

7 Discussion

The principle experimental findings which require further
discussion are:
– the precise determination of the temperature depen-

dence of the magnetic propagation vector in the bulk
and of the SDW intensities;

– the unequal population of the SDW domains;
– the intensity ratio of the SW satellites, which gives

information on a possible CDW contribution;
– the intensity ratio of the magnetic satellites, which

gives information on the spin density distribution
throughout the unit cell;

– the separation of spin and orbital magnetic form-
factor.

In what follows we will discuss each of these points in
greater detail.

As for the temperature dependence a smooth varia-
tion of the magnetic propagation vector was found which
indicates that the magnetic period is incommensurate to
the period of the lattice at least for the transversally po-
larised SDW. This result is a complement to the result
of Hill et al. [21] to avoid possible surface effects and to
be able to make a statement for the crystal bulk using
the high resolution of X-rays diffraction. Note that in rare
earth metals like holmium [42] and erbium [43], which also
have an incommensurate magnetic structure, a lock-in to
commensurate positions for lower temperatures has been
observed.

As can be seen in Figure 5, the X-ray intensity vari-
ation of the magnetic satellite with temperature dif-
fers from the curve determined by neutron diffraction.
The behaviour found by Hill et al. [21] is very similar
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to the one found here although their measurement suf-
fers of poor statistics. A possible explanation could be
that the domain distribution among the two domains with
equal propagation vector of the SDW changes with tem-
perature. This cannot be detected by neutron diffraction
because here both domains contribute equally if satellites
of type 1±δ 0 0 are investigated. In the case of high-energy
X-ray diffraction the measured intensity depends on the
component of magnetisation perpendicular to the diffrac-
tion plane. So, small changes in domain distribution of
domains with equal propagation vector can have an effect
on the measured intensity. The comparison between the
intensity variations of the SDW and SW satellites, shown
in Figure 9, confirms this assumption. Here, the neutron
data coincide very well with the scaled intensity of the SW
satellites.

We found very unequal populations of the 1 0 0 and
0 0 1 domains leading to the strong difference in inten-
sity of the 1−δ 0 0 and the 1 0−δ satellites. This was also
stated by Hill et al. [21]. They attributed it to near-surface
effects. From our measurements with high-energy photons
we can conclude that this effect extends throughout the
whole crystal. A possible explanation for this behaviour
could be the strain induced through the SW. It favours
the formation of one domain, if the energy of producing
a domain wall is larger than the magnetic energy. This
very unequal domain population has been found also in
a neutron diffraction experiment which we performed on
a different sample. This confirms the assumption that it
is a true bulk effect. However, the population of the two
domains with equal propagation vector in the transver-
sally polarised phase is likely to be nearly identical, as
shown by the intensity variation of the magnetic satel-
lite at TSF. A small change in the distribution of these
domains with temperature remains possible, as discussed
above. Because of the large statistical error in case of the
intensities from the 〈0 0 1〉 domain an unequal population
of the two 〈0 0 1〉 domains in the transversally polarised
SDW cannot be concluded.

We have measured the intensity ratio of the 2q-
satellites in an attempt to distinguish between a contri-
bution of the SW and the CDW. It turns out that such a
separation is difficult because the data evaluation is very
sensitive to the atomic form-factor for the charge reflec-
tions. Different model calculations [41,44] will result in a
different ratio between the CDW and the SW contribu-
tion. An effort of a separation has been undertaken by
Mori and Tsunoda [16]. They state a small CDW contri-
bution with an amplitude of 0.003–0.02 electrons/atom.
However, Table 4 shows that their data is consistent with
a pure SW, if the form-factor of [41] is used. Kugler [45]
could determine that the amplitude of the CDW must
be smaller than 0.001 electrons/atom. Our results differ
slightly from the values found by Mori and Tsunoda and
are consistent with a pure SW state for chromium. We
conclude that the CDW contribution is negligible.

From the intensity ratio of the magnetic satellites a
determination of the spin-density distribution throughout
the unit cell can be deduced for the SDW. Werner, Arrot

and Kendrick [11] found an intensity ratio at the 1 0 0
reflection of I+/I− = 0.78 ± 0.02, significantly different
from 1. Therefore they stated that the rigid-spin model is
the appropriate model for chromium. In this model, the
magnetic moment is assumed to vary discontinuously from
one atom to the other. Our data for the 1 0 0 reflection are
consistent with their interpretation. However, so far only
data for the 1 0 0 position are published. Surprisingly we
find an inverted ratio at the 1 1 1 position (see Tab. 2).
Therefore a statement about the type of modulation from
our measurements is critical. Since the ratio (f−/f+ − 1)
is positive for the 1 0 0 and negative for the 1 1 1 satellite,
no definite phase relation between SDW and SW can be
determined [35]. An investigation of magnetic satellites at
more reciprocal lattice positions could give some hint how
to chose the right model.

For the moment distribution in the ordered phase we
have reported a separation of spin S and orbital L form-
factor. Because of the form of the magnetic scattering
cross section, a model independent separation is not possi-
ble with neutron diffraction alone. In contrast to neutron
diffraction X-rays allow a L/S determination by employing
polarisation analysis. Such measurements have been per-
formed on Ho, UAs and NiO [7–10]. For chromium with
its small magnetic moment these experiments present a
real challenge, since diffracted intensities over 8 orders of
magnitude have to be measured. Therefore we propose
here a new method of combining high-energy X-ray and
neutron diffraction, avoiding further intensity reduction
due to polarisation analysis of the scattered beam. Taking
the X-ray form-factor to be spin-only, we can deduce an
orbital contribution of −4(8)% to the neutron form-factor.
This is in reasonable agreement with the very small spin-
orbit induced orbital moment of−0.004µB which has been
obtained by our band structure calculation. It is interest-
ing to note that the calculated orbital moment for anti-
ferromagnetic chromium is about an order of magnitude
smaller than that found for the pure ferromagnetic tran-
sition metals Fe, Co and Ni [28]. Note that an antiparallel
orientation of L and S is expected in a simple atomic pic-
ture for a less than half filled d shell according to Hund’s
third rule. The most severe systematic error for our ex-
perimental result stems from the fact that our X-ray data
have not been measured on an absolute scale. Such a mea-
surement is difficult due to the six domains in the SDW
state. For this reason we had to rely on a calculated Q-
dependence of the orbital angular-momentum form-factor.
Clearly, this can lead to systematic errors and implies the
large estimated standard-deviation of 8%. While we have
demonstrated the method, it would be desirable to repeat
the X-ray measurements on a manganese-doped chromium
crystal where the magnetic satellites are concentrated in
one commensurable peak, resulting in better statistics.

Due to the small absorption, transition metals are ide-
ally suited for high-energy X-ray investigations. However,
spin and orbital form-factor have a similar Q-dependence
for 3d elements which renders a determination of L/S
by the method proposed here more difficult. This is not
the case for actinides. While the heavier rare earth (4f)
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elements have more localised (atomic like) magnetic prop-
erties a separation of L and S would be of high interest for
the lighter lanthanides (4f) and actinides (5f). Here, the
Q-dependence of spin and orbital momentum differ con-
siderably, but the high absorption cross section will lead
to a smaller volume enhancement.

8 Summary

We were able to determine a form-factor dependence of
pure chromium by measuring five satellite reflections. A
comparison to neutron measurements on a manganese-
doped chromium crystal [22], indicates a negligible orbital
momentum contribution.

From the comparison of the temperature dependence
of the magnetic intensity below and above the spin flip
temperature we can assume an unequal domain occupa-
tion in the bulk of the sample for the SDW with equal
propagation direction in the transverse polarised state.

For the SW satellites similar results to former investi-
gations with conventional X-ray diffraction were found. A
CDW contribution could not be established.

To conclude, we can say that high-energy synchrotron
radiation is well suited to measure the magnetic form-
factor of transition metals. Results are obtained even in
case of a very small magnetic moment as it is the case for
chromium.
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